Electrically tunable THz graphene metasurface wave retardersopen access
- Authors
- Park, H[Park, Hyunwoo]; Jeong, S[Jeong, Sodam]; Seo, C[Seo, Changwon]; Park, H[Park, Hyeongi]; Oh, D[Oh, Donghak]; Shim, JE[Shim, Jae-Eon]; Lee, J[Lee, Jaeyeong]; Ha, T[Ha, Taewoo]; Kim, HD[Kim, Hyeon-Don]; Baek, S[Baek, Soojeong]; Min, B[Min, Bumki]; Kim, TT[Kim, Teun-Teun]
- Issue Date
- 2023
- Publisher
- WALTER DE GRUYTER GMBH
- Keywords
- active polarization control; electrically tunable quarter-wave plate; graphene; graphene metasurfaces; metasurfaces
- Citation
- NANOPHOTONICS
- Indexed
- SCIE
SCOPUS
- Journal Title
- NANOPHOTONICS
- URI
- https://scholarx.skku.edu/handle/2021.sw.skku/103266
- DOI
- 10.1515/nanoph-2022-0812
- ISSN
- 2192-8606
- Abstract
- Anisotropic materials with chirality or birefringence can be used to manipulate the polarization states of electromagnetic waves. However, the comparatively low anisotropy of natural materials hinders the miniaturization of optical components and devices at terahertz frequencies. In this study, we experimentally demonstrate that the relative phase retardation of a THz wave can be electrically controlled by integrating patterned mono- and bilayer graphene onto an otherwise isotropic metasurface. Specifically, we show that a refractive index for one of the orthogonal polarization states can be electrically controlled by modulating graphene's conductivity, thereby weakening the capacitive coupling between adjacent meta-atoms in an anisotropic manner. With monolayer graphene, phase retardation of 15 degrees to 81 degrees between two orthogonal polarization states can be achieved. Maximum phase retardation of 90 degrees through a metasurface with bilayer graphene suggests its use as a tunable quarter-wave plate. Continuous control from linear- to circular-polarization states may provide a wide range of opportunities for the development of compact THz polarization devices and polarization-sensitive THz technology.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - Institute of Basic Science > Institute of Basic Science > 1. Journal Articles

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.