Detailed Information

Cited 1 time in webofscience Cited 1 time in scopus
Metadata Downloads

AI-Based Degradation Index from the Microstructure Image and Life Prediction Models Based on Bayesian Inferenceopen access

Authors
Yu, J.[Yu, Junsang]Oh, H.[Oh, Hayoung]
Issue Date
1-May-2023
Publisher
MDPI
Keywords
Bayesian model; degradation prediction; extreme-environment material; gas turbine; life prediction
Citation
Sustainability (Switzerland), v.15, no.9
Indexed
SCIE
SSCI
SCOPUS
Journal Title
Sustainability (Switzerland)
Volume
15
Number
9
URI
https://scholarx.skku.edu/handle/2021.sw.skku/106311
DOI
10.3390/su15097298
ISSN
2071-1050
Abstract
In this study, we propose a consistent and explainable degradation indexing method and a non-destructive-based degradation and creep-life prediction method from extensive destructive test (creep-rupture) data of a nickel-based superalloy (DA-5161 SX), an extreme-environment material. High-temperature components made of nickel-based superalloys that operate in extreme environments (e.g., gas turbine blades) deteriorate over time and shorten the life of the device. To ensure the safety and efficiency of the equipment, it is important to predict the lifetime of high-temperature parts, and a consistent and explanatory degradation index and a reliable predictive model that can predict the degree of degradation and life without destructive testing of high-temperature parts are needed. As the degradation of nickel-based superalloys progresses, degradation indices reflecting the geometrical characteristics are required that focus on the fact that the shape of the gamma-prime phase becomes longer and larger. A representative value of the degradation index was selected through parameter inference based on a Bayesian method, and the high-dimensional degradation index of previous studies was simplified to only one dimension. The robustness of the degradation index quantification model was verified by confirming that the degradation index obtained from 20% of the test images had the lowest change rate of the degradation index obtained from 80% of the training images at 6.9%. The basis for predicting the life of high-temperature parts without destructive testing was established in the degradation index and life prediction model by connecting environmental conditions and degradation indices/the LMP (Larson–Miller parameter) to represent creep life in regression models. Gaussian process regression (GPR) models based on sampling-based Bayesian inference performed well in terms of both RMSE in the degradation index and the LMP prediction model, demonstrating robust behavior in performance variation. This may be used as a key health factor that indicates the soundness of diagnostic solutions in the future, and it is expected to be a foundational technology for decision-making models for maintenance, repair, and disposal. © 2023 by the authors.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Computing and Informatics > Computer Science and Engineering > 1. Journal Articles
Computing and Informatics > Convergence > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher OH, HA YOUNG photo

OH, HA YOUNG
Computing and Informatics (Convergence)
Read more

Altmetrics

Total Views & Downloads

BROWSE