Multi-scaled temporal modeling of cardiovascular disease progression: An illustration of proximal arteries in pulmonary hypertension
- Authors
- Shim, Young-Dae; Chen, Mei-Cen; Ha, Seongmin; Chang, Hyuk-Jae; Baek, Seungik; Lee, Eun-Ho
- Issue Date
- May-2024
- Publisher
- Elsevier Ltd
- Keywords
- Artery degradation; Pulmonary artery hypertension; Stress-driven growth; Thermodynamic modeling
- Citation
- Journal of Biomechanics, v.168
- Indexed
- SCIE
SCOPUS
- Journal Title
- Journal of Biomechanics
- Volume
- 168
- URI
- https://scholarx.skku.edu/handle/2021.sw.skku/111037
- DOI
- 10.1016/j.jbiomech.2024.112059
- ISSN
- 0021-9290
1873-2380
- Abstract
- The progression of cardiovascular disease is intricately influenced by a complex interplay between physiological pathways, biochemical processes, and physical mechanisms. This study aimed to develop an in-silico physics-based approach to comprehensively model the multifaceted vascular pathophysiological adaptations. This approach focused on capturing the progression of proximal pulmonary arterial hypertension, which is significantly associated with the irreversible degradation of arterial walls and compensatory stress-induced growth and remodeling. This study incorporated critical characteristics related to the distinct time scales for the deformation, thus reflecting the impact of mean pressure on artery growth and tissue damage. The in-silico simulation of the progression of pulmonary hypertension was realized based on computational code combined with the finite element method (FEM) for the simulation of disease progression. The parametric studies further explored the consequences of these irreversible processes. This computational modeling approach may advance our understanding of pulmonary hypertension and its progression. © 2024 Elsevier Ltd
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - Confucian Studies & Eastern Philosophy > Department of Confucian and Oriental Studies > 1. Journal Articles

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.