Carboxymethyl cellulose-polylactic acid particles for inhibiting anoikis and enhancing wound healing efficacy of human mesenchymal stem cellsopen access
- Authors
- Lee, Dong-Hyun; Lee, You Bin; Park, Hyun Su; Jang, Young-Ju; Kim, Youn Chul; Bhang, Suk Ho
- Issue Date
- 12-Feb-2025
- Publisher
- WILEY
- Keywords
- anoikis; carboxymethyl cellulose; cell viability; polylactic acid; stem cell therapy
- Citation
- BIOENGINEERING & TRANSLATIONAL MEDICINE
- Indexed
- SCIE
SCOPUS
- Journal Title
- BIOENGINEERING & TRANSLATIONAL MEDICINE
- URI
- https://scholarx.skku.edu/handle/2021.sw.skku/120634
- DOI
- 10.1002/btm2.70003
- ISSN
- 2380-6761
2380-6761
- Abstract
- Adult human mesenchymal stem cells (hMSCs) injection into the wound site promotes angiogenesis and the wound-closing process by secreting various growth and immune-modulating factors. However, lower cell attachment sites and the hypoxic microenvironment in the wound site limit their viability and engraftment rate, leading to programmed cell death, anoikis. We synthesized carboxymethyl cellulose-coated polylactic acid (CMC-PLA) particles to prevent anoikis by providing an attachable surface for hMSCs. In vitro experiments demonstrated enhanced viability and secretion of growth factors by hMSCs under severely hypoxic microenvironments, when CMC-PLA particles provided attachment surfaces, compared to controls. Furthermore, in vivo experiments showed that CMC-PLA particles injected with hMSCs improved collagen synthesis and wound closure more than those of the control groups. These findings suggest that CMC-PLA particles effectively enhance the therapeutic potential of hMSCs by providing a supportive microenvironment, promoting cell survival, proliferation, and angiogenesis, thereby offering a promising approach for advanced wound healing therapies.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - Research & Business Foundation > ETC > 1. Journal Articles
- Engineering > Chemical Engineering > 1. Journal Articles

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.