Detailed Information

Cited 12 time in webofscience Cited 11 time in scopus
Metadata Downloads

Assessing central serous chorioretinopathy with deep learning and multiple optical coherence tomography imagesopen access

Authors
Ko, JunseoHan, JinyoungYoon, JeewooPark, Ji InHwang, Joon SeoHan, Jeong MoPark, Kyu HyungHwang, Daniel Duck-Jin
Issue Date
Feb-2022
Publisher
NATURE PORTFOLIO
Citation
SCIENTIFIC REPORTS, v.12, no.1
Indexed
SCIE
SCOPUS
Journal Title
SCIENTIFIC REPORTS
Volume
12
Number
1
URI
https://scholarx.skku.edu/handle/2021.sw.skku/95457
DOI
10.1038/s41598-022-05051-y
ISSN
2045-2322
Abstract
Central serous chorioretinopathy (CSC) is one of the most common macular diseases that can reduce the quality of life of patients. This study aimed to build a deep learning-based classification model using multiple spectral domain optical coherence tomography (SD-OCT) images together to diagnose CSC. Our proposed system contains two modules: single-image prediction (SIP) and a final decision (FD) classifier. A total of 7425 SD-OCT images from 297 participants (109 acute CSC, 106 chronic CSC, 82 normal) were included. In the fivefold cross validation test, our model showed an average accuracy of 94.2%. Compared to other end-to-end models, for example, a 3D convolutional neural network (CNN) model and a CNN-long short-term memory (CNN-LSTM) model, the proposed system showed more than 10% higher accuracy. In the experiments comparing the proposed model and ophthalmologists, our model showed higher accuracy than experts in distinguishing between acute, chronic, and normal cases. Our results show that an automated deep learning-based model could play a supplementary role alongside ophthalmologists in the diagnosis and management of CSC. In particular, the proposed model seems clinically applicable because it can classify CSCs using multiple OCT images simultaneously.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Computing and Informatics > Convergence > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher HAN, JIN YOUNG photo

HAN, JIN YOUNG
Computing and Informatics (Convergence)
Read more

Altmetrics

Total Views & Downloads

BROWSE