A weighted multi-feature transfer learning framework for intelligent medical decision makingopen access
- Authors
- Yang, Yun; Guo, Jing; Ye, Qiongwei; Xia, Yuelong; Yang, Po; Ullah, Amin; Muhammad, Khan
- Issue Date
- Jul-2021
- Publisher
- ELSEVIER
- Keywords
- Medical decision making; Transfer learning; Ensemble learning; Distribution variances; Transformative computing
- Citation
- APPLIED SOFT COMPUTING, v.105
- Indexed
- SCIE
SCOPUS
- Journal Title
- APPLIED SOFT COMPUTING
- Volume
- 105
- URI
- https://scholarx.skku.edu/handle/2021.sw.skku/98271
- DOI
- 10.1016/j.asoc.2021.107242
- ISSN
- 1568-4946
1872-9681
- Abstract
- Transformative computing provides an emerging technology to data analysis and information processing, but how to effectively connect the data derived from different domains has aroused much of concern. Especially on medical areas, the scarcity of annotated medical data makes it hard to build a robust classification model, thus, the utilization of medical resources from different sources is particularly important. Transfer learning leverages the knowledge gained from the related domain to enhance the computational effectivity on the target domain. In this work, we extend transfer learning with ensemble learning to present a novel Weighted Multi-Feature Hybrid Transfer Learning Framework (W-MHTL) that builds a transformative approach to connect different domains and applies it to medical decision making. Our approach lessens the distribution variances from multiple perspectives by applying variant types of feature-based transfer learning methods. In each feature space, we construct the transfer model by evaluating the correlations and obtain the predicting result from each model. Finally, a feasible ensemble strategy is used to jointly consider each result. We evaluate our approach on synthetic datasets and UCI medical benchmarks, and a cerebral stroke dataset collected from local hospital. The experimental results reveal that our method achieves superior performances with the currently available alternatives. (C) 2021 Elsevier B.V. All rights reserved.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - Computing and Informatics > Computer Science and Engineering > 1. Journal Articles
- Computing and Informatics > Convergence > 1. Journal Articles

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.