Efficient Fire Segmentation for Internet-of-Things-Assisted Intelligent Transportation Systems
- Authors
- Muhammad, K[Muhammad, Khan]; Ullah, H[Ullah, Hayat]; Khan, S[Khan, Salman]; Hijji, M[Hijji, Mohammad]; Lloret, J[Lloret, Jaime]
- Issue Date
- 16-Sep-2022
- Publisher
- IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
- Keywords
- Computer architecture; Image segmentation; Convolution; Feature extraction; Convolutional neural networks; Computational modeling; Computational complexity; Convolutional neural networks; deep learning; edge intelligence; fire segmentation; intelligent transportation systems; Internet of Things (IoT); semantic segmentation
- Citation
- IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, pp.1 - 10
- Indexed
- SCIE
SCOPUS
- Journal Title
- IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS
- Start Page
- 1
- End Page
- 10
- URI
- https://scholarx.skku.edu/handle/2021.sw.skku/99964
- DOI
- 10.1109/TITS.2022.3203868
- ISSN
- 1524-9050
- Abstract
- Rapid developments in deep learning (DL) and the Internet-of-Things (IoT) have enabled vision-based systems to efficiently detect fires at their early stage and avoid massive disasters. Implementing such IoT-driven fire detection systems can significantly reduce the corresponding ecological, social, and economic destruction; they can also provide smart monitoring for intelligent transportation systems (ITSs). However, deploying these systems requires lightweight and cost-effective convolutional neural networks (CNNs) for real-time processing on artificial intelligence (AI)-assisted edge devices. Therefore, in this paper, we propose an efficient and lightweight CNN architecture for early fire detection and segmentation, focusing on IoT-enabled ITS environments. We effectively utilize depth-wise separable convolution, point-wise group convolution, and a channel shuffling strategy with an optimal number of convolution kernels per layer, significantly reducing the model size and computation costs. Extensive experiments on our newly developed and other benchmark fire segmentation datasets reveal the effectiveness and robustness of our approach against state-of-the-art fire segmentation methods. Further, the proposed method maintains a balanced trade-off between the model efficiency and accuracy, making our system more suitable for IoT-driven fire disaster management in ITSs.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - Computing and Informatics > Convergence > 1. Journal Articles

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.